"Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction"

Prof. Dan Ludois – Principle Investigator University of Wisconsin - Madison

June 9th, 2015

Project ID: EDT065

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline: 2 years

Project start date: October 1st, 2014

Project end date: September 30th, 2016

Percent complete: 33% as of today

Budget: \$616,567

DOE - \$493,247

FY1 \$279,245

FY2 \$214,002

UW & IIT - \$123,320

Partners

- Prof. Dan Ludois University of Wisconsin Madison
- Prof. Ian Brown Illinois Institute of Technology

Barriers

- Magnet cost (about \$200) is about 75% of the 2020 motor cost target;
 eliminating PMs reduces motor cost by 30%
- The back EMF of Interior PM machines requires a boost converter, which brings the power electronics cost above the 2015 or 2020 cost targets; eliminating the boost converter saves 20% in power electronics cost
- Poor power factors for Interior PM machines cause larger currents,
 increasing size and cost of PE; improved power factor saves 15% PE cost

Background Motivation - Relevance

- Commercial & societal detractions of permanent magnet synchronous machines (PMSMs)
 - Rare earth PMs are significant fraction of EV motor cost
 - Rare earth PM market is volatile
 - Rare earth PM extraction and refinement environmentally hazardous
 - Rare earth PMs are largely single source from a foreign power

Background Motivation - Relevance

- PMSM's operational detractions in a traction application
 - PMs have a fixed flux level, non variable, always "on"; safety concerns during inverter faults.
 - Interior PMSMs typically operate with negative d-axis current (especially during field weakening operation);
 - Power factor lowered because of the reactive current
 - Traction inverter oversized to supply reactive current
 - Increased losses in inverter and stator (ohmic)

Wound Field Synchronous Machines (WFSM) stand to overcome the limitations of PMSMs via electromagnets

Project Objective – Relevance

- Design, develop, and demonstrate a prototype wound field synchronous motor (WFSM) with brushless rotor excitation via capacitive power transfer (CPT) capable of replicating the performance of commercially available Interior PM motors for EV traction.
- Two WFSM prototypes have the following technical targets:

DOE USDRIVE AND WFSM PROTOTYPE TARGETS

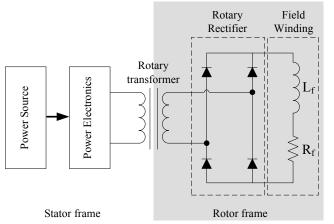
Attribute	Units	USDRIVE 2015 Target	USDRIVE 2020 Target	WFSM Prototype 1 Target	WFSM Prototype 2 Target
Peak Power	kW	55	55	55	55
Cont. Power	kW	30	30	30	30
Specific Power	kW/kg	1.3	1.6	1.3	1.6
Power Density	kW/l	5	5.7	4.5	5
Specific Cost	\$/kg	7	4.7	-	- /

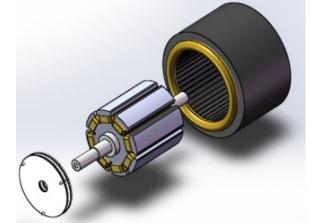
Budget Period 1 Milestones

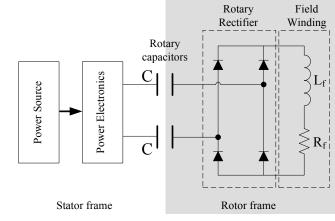
Milestone	Type	Description
Initial Electrostatic Design Complete	Technical	Analytical and finite element confirmation of capacitive coupler transferring average field power [≥300 W] and peak field power [≥600W] with limited electric fields [<1.5 MV/m]
Development of Combined Thermal and Electromagnetic WFSM Multi-objective Optimization Code Complete	Technical	Optimization results for sample designs match detailed finite element modelling results within 15% for average torque, torque ripple, phase flux linkage and within 20% for stator core losses.
Multi-objective Optimization and Selection of Candidate Designs for Prototyping Complete	Technical	Candidate designs meet the following technical goals: 55 kW peak power for 18 sec., 30 kW power continuous, specific power >1.3 kW/kg, power density >4.5 kW/l in optimization analysis.
Construction WFSM Prototype 1 Complete	Technical	Selected design for prototype 1 constructed and ready for bench testing.
Capacitive Coupling Bench Test Complete	Go/No Go	Experimentally confirm capacitive coupling transfers average field power [≥300 W] and peak field power [≥600W] to dummy load.

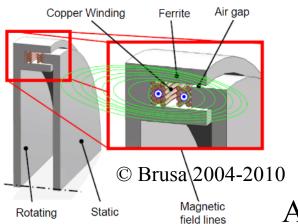
Budget Period 2 - Milestones

Milestone	Туре	Description
WFSM Prototype 1 Initial Dynamometer Testing with Brushes Complete	Technical	Design for prototyping meets the following technical goals 55kW peak power for 18 sec., 30 kW power continuous, specific power ≥1.3 kW/kg, power density ≥ 4.5kW/l
Dynamometer Testing of WFSM and Capacitive Coupler Prototypes 1 Complete	Technical	The measured performance of the WFSM Prototype 1 meets or exceeds the following specifications: specific power density [≥1.3 kW/kg], volumetric power density [4.5≥kW/l].
Simulation Validation Complete	Technical	The simulation demonstrates that the WFSM stator terminal voltage can be regulated with CPT without the need for the main traction drive.
WFSM Performance – Prototype 2 Achieved	Technical	The measured performance of the WFSM meets or exceeds the following specifications: specific power density [≥ 1.6 kW/kg], volumetric power density [≥ 5 kW/l].
Performance in CERTS Microgrid Achieved	Go/No Go	The WFSM is able to transfer real and reactive power to the micro-grid.

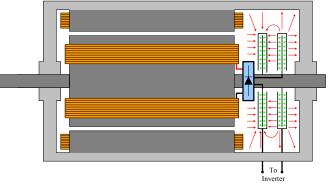

Approach/Strategy Potential WFSM Advantages


- Wound field synchronous machines (WFSMs) require no PMs
- WFSM have complete control of field excitation
 - Third control variable i_q , i_d , i_f
 - WFSM have potential for optimal field weakening and a large constant power speed range
 - Loss minimization control
 - Rapidly de-energize field in the case of inverter fault
 - Traction inverter downsizing and improved efficiency
- Potential for power take off (generator operation) and grid support when used in a hybrid vehicle application

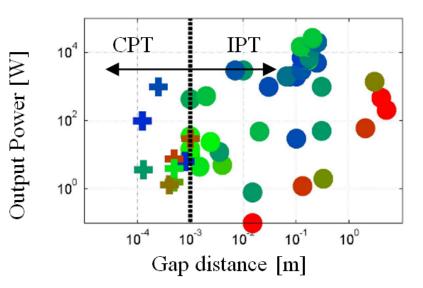




Approach/Strategy Inductive (IPT) vs. Capacitive (CPT) Coupling



Basic idea: replace PMs with electromagnets

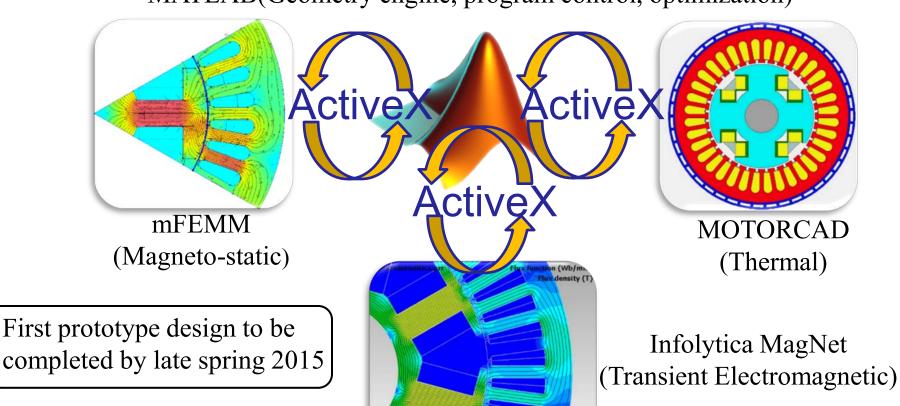

Approach to Critical Challenges


- Design of the rotor and stator for max power density
- Non-contact rotor field power, i.e. brushless Capacitive Power Transfer

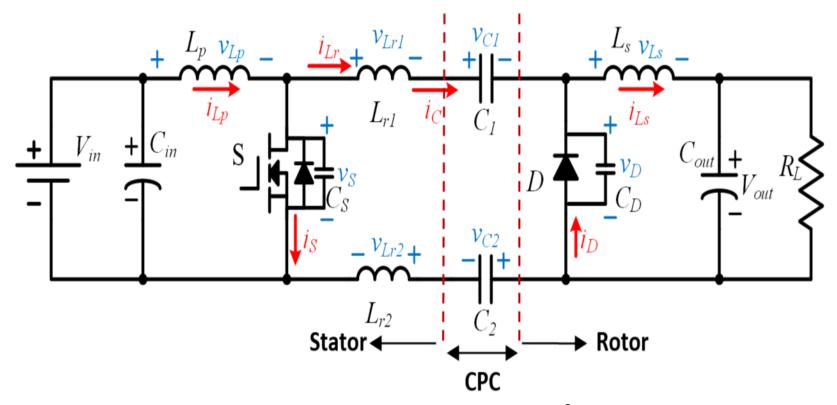
Approach/Strategy CPT in WFSM Advantages

Dai, J.; <u>Ludois</u>, <u>D</u>., "A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications," *Power Electronics*, *IEEE Transactions on*

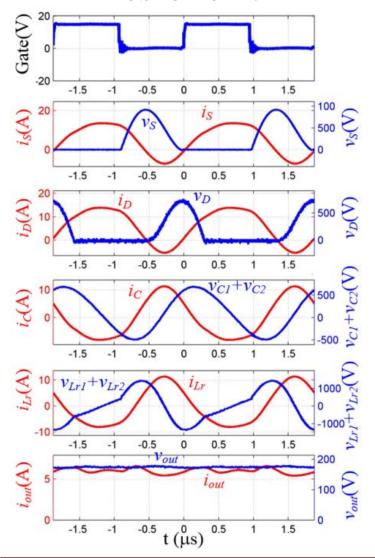
-CPT has comparable power capability to IPT for small gaps


- CPT Advantages for WFSMs: less shaft length, high structural integrity
 - No need for back iron, vs. closed magnetic path in transformers
 - Electric flux lines terminate on charge, field cancels outside gap
 - Metal disks naturally suited for high speed
 - No composite materials or brittle materials (like ferrite)
 - Air dielectric works well at high frequency
 - Light weight, low cost: No magnetic grade steel, ferrite or copper windings

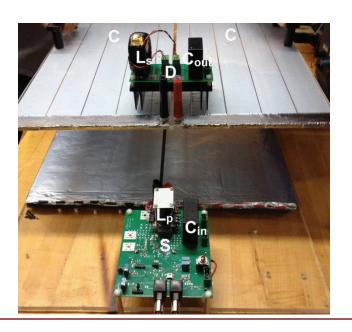
Approach/Strategy WFSM Flexible Design Environment


A combined WFSM electromagnetic and thermal design optimization environment has been created MATLAB(Geometry engine, program control, optimization)

Technical Accomplishments/Progress Milestone 1: Initial Electrostatic Design

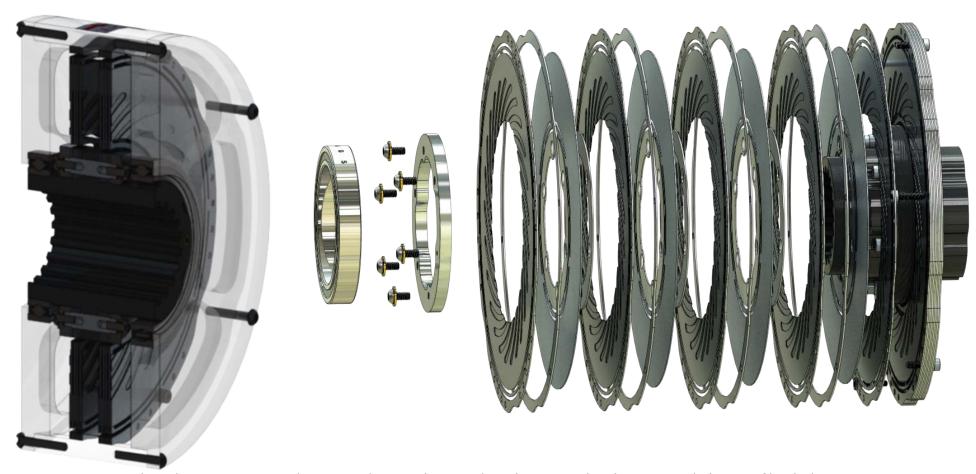


- Class E amplifier and rectifier, "class E²"
- 2.5 kW capable, 550kHz switching, 1200V SiC switches
- Requires ~10nF of coupling capacitance for C1, C2



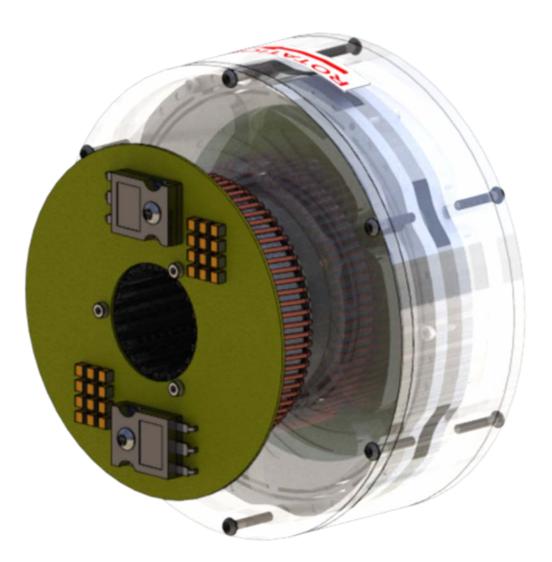
Technical Accomplishments/Progress Milestone 1: Initial Power Electronic Circuit Results

- General pad implementation (prior to WFSM)
- 1100W, 92% efficient (DC to DC)
- Output: 165V and 7A
- 9nF coupling capacitance (C1, C2)
- 540kHz soft switching
- Peak device voltage ~0.85kV (1.2kV SiC parts)



Technical Accomplishments/Progress

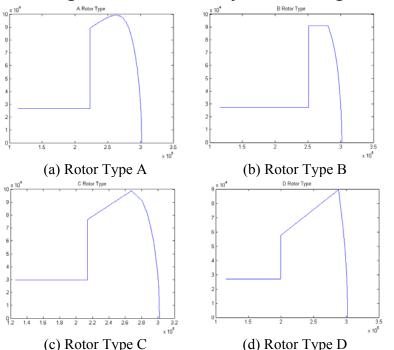
Milestone 1: Axial Flux Hydrodynamic Coupling Capacitors

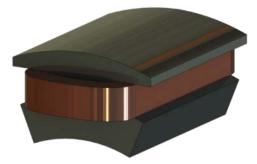

- Spiral groove thrust bearing design, air is working fluid
- 100mm diameter, 50 micron gap, 10nF realized for C1 & C2

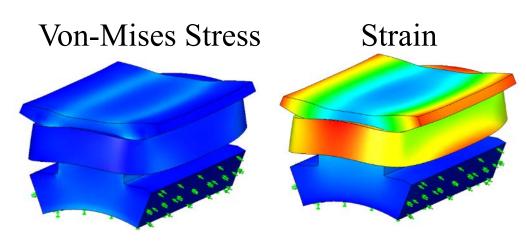
Technical Accomplishments/Progress

Milestone 1: Initial Electrostatic Design, CPT Coupling

- <1/3 the axial length of a traditional brushless exciter for this machine rating
- 2.5 kW throughput
- Mass: 600 grams
- Mechanically stable to high speeds
- Prototype construction underway

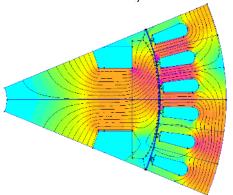




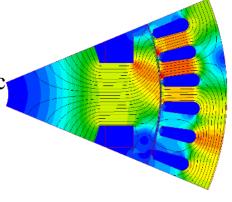

Technical Accomplishments/Progress Milestone 2: Parametric Geometry and Structural Analysis

- Geometry (stator and rotor) is parameterized to allow full exploration of design space
 - Geometry engine allows for points to merge and collapse
 - Single and double layer windings

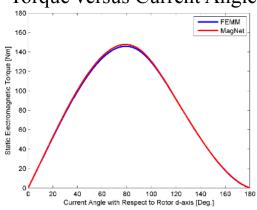
- Design of experiments structural analysis
 - Determine rotor geometric design variable limitations

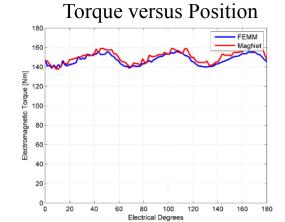

Technical Accomplishments/Progress

Milestone 2: Rapid Transient Magnetic Behavior Reconstruction

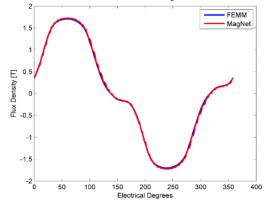

- Using a series of magneto-static simulations and fully exploiting magnetic and electric symmetries to reconstruct transient behavior rapidly
 - Enables multi-objective population based optimization

Coupled with thermal analysis


Rapid magneto-static reconstruction FEMM



Transient magnetic MagNet



Torque versus Current Angle

Radial Flux Density Mid-Tooth

Response to Previous Year Reviewers' Comments

• This project is a new start

Partnerships/Collaborations

- Lead Institution (PI) University of Wisconsin Madison
- Sub-award Institution Illinois Institution of Technology
 - Weekly meeting between project institution leads (Ludois, Brown)
 - Biweekly joint teleconferences between teams (includes students)
 - Site visits for hands on collaboration
- C-Motive Technologies Inc. (Madison WI based startup)
 - C-Motive advising UW on CPT deployment
 - Lending capacitive surface coating and annealing know how
 - Desires to participate in future commercialization effort if project is successful

Future Work & Activities

Budget Period 1 (Through 9/30/2015)

- Complete construction of WFSM Prototype 1
- Control code development and dynamometer testing of WFSM Prototype 1
- Complete construction of Capacitive Coupler Prototype 1
- Bench testing of Capacitive Coupler Prototype 1

Budget Period 2 (10/1/2015 - 9/30/2016)

- Dynamometer testing of WFSM and Capacitive Coupler Prototypes 1
- Design of WFSM Prototype 2 from lessons learned with Prototype 1
- Design of Capacitive Coupler Prototype 2 from lesson learned
- Construction of WFSM and Capacitive Coupler Prototypes 2
- Dynamometer testing of WFSM and Capacitive Coupler Prototypes 2
- Investigation of power take-off capability and microgrid support

Summary

Relevance

- Develop a high performance wound field synchronous machine for EV traction
 - Brushless & permanent magnet free
- Reduce EV motor and traction inverter cost

Approach

- Capacitive power transfer for compact brushless rotor excitation
- Combined electromagnetic and thermal multi-objective optimization for WFSM

• Technical Accomplishments

- Initial capacitive coupler design complete, power electronics functionality confirmed experimentally at >1kW and 92% efficient.
- Parametric geometry engine, rapid reconstruction of transient magnetic behavior from static simulations, to enable population based optimization

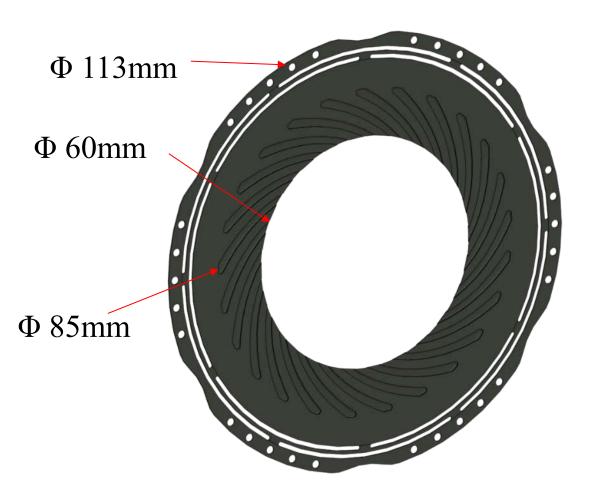
Future Work

- Construction and dynamometer testing of WFSM and Capacitive Coupler
- Design refinement and 2nd prototype development from 1st prototype lessons learned
- WFSM control algorithms and deployment in a microgrid environment

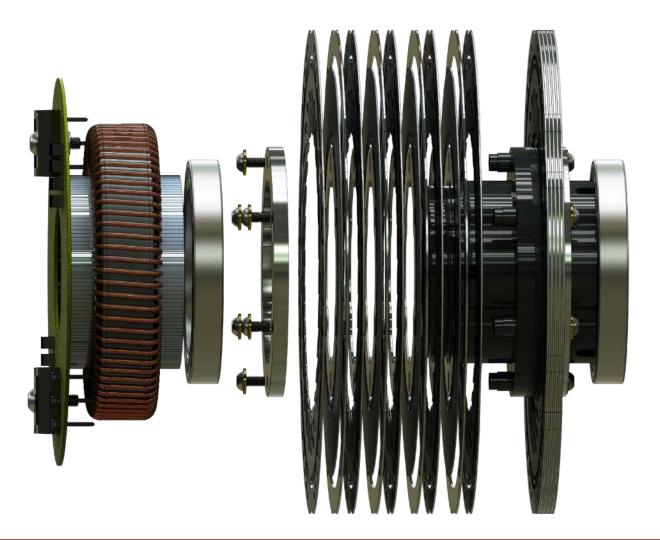
Technical Back-Up Slides

Coupling Capacitor Rotors

Ф 60mm


- 0.016in. thick 3003-O Aluminum sheets
- Hard anodized beyond flexures
- Torque transmitted through featured I.D. and nylon 6/6 alignment pins
 - 3003-O
 - Resistivity 3.649E-8 [Ohm-m]
 - Yield Strength 144.78 [Mpa]
 - 6061-T6
 - Resistivity 4.066E-8 [Ohm-m]
 - Yield Strength 241.31 [Mpa]

Coupling Capacitor Stators



- 0.016in. thick 3003-O Aluminum sheets
- Designed as outwardly pumping spiral groove bearing
- Supported on flexure beams at OD

Capacitive Power Coupling Exploded View

- 2 coupling capacitors, C1, C2
- Rectifier board

